CN / EN
banner图
Master The Core Technology Control The Use Of Light

Technical Articles

机器视觉在印刷品缺陷检测中的主要应用技术

Date:2013-05-16 Source:九游会J9
                         随着机器视觉技术的不断发展,行业逐步利用机器视觉系统来代替人进行印刷品缺陷检测,极大的提高了生产效率,降低生产成本,给力行业应用
  
在产品印刷过程中,由于工艺等原因,印刷品往往会出现色差、套印不准等现象,还会出现一些缺陷点、墨线、黑皮之类的外观缺陷,从而导致印刷次品的出现。印刷企业一般采用人工方法,在印中抽样及印后逐一进行目测的方法分拣次品,检测效率低、成本高、劳动强度大。

随着机器视觉技术的不断发展,行业逐步利用机器视觉系统来代替人进行印刷品缺陷检测,极大的提高了生产效率,降低生产成本,给力行业应用。

一、图像采集及预处理

图 像采集过程中,由于摄像机精度、照明环境等因素的影响,采集的图像会存在一定的随机噪声,从而导致图像失真。这里采用即可去掉尖锋干扰,又能保持边缘细节 的加权中值滤波算法。确定一个像素个数为奇数的窗口W,先对窗口内各像素加权,某一像素加权值为m,即窗口像素灰度排队时该像素重复m个,再将窗口内的各 像元按灰度值从大到小排列,再用其中间位置的灰度值代替原图像f(x,y)的中间值,得到增强图像g(x,y)。

二、视觉检测

视觉检测主要包含两部分,即缺陷检测及识别。印刷缺陷表现在图像上,即为采集图像缺陷处的灰阶值与标准图的差异。将采集图像的灰度值同标准图进行差分(像素值相减),判断其差值(两幅图灰阶值的相差程度)是否超出以预先设定的标准值范围,就能判断出这幅印刷品有无缺陷。

缺 陷识别过程,即差分完成后,得到一幅同采集图大小相同的差分图,其像素值是每两幅图像对应像素点的差值。随后,对差分图像进行逐行扫描,对缺陷点进行探 测。当遇到缺陷点像素时(其值>0),用递归的方法遍历整个缺陷区域,同时记录下缺陷区的大小、尺寸。整个扫描过程完成后,递归的次数就是缺陷的个 数。

利 用基于PC的机器视觉系统代替人工进行印刷品检测,利用计算机精度高、速度快的特点,迅速而精确地检测出印刷品的外观缺陷,并对缺陷程度进行综合分析,从 而判断印刷品是否为次品或废品。较之外观缺陷要困难得多的如色差、套印不准等缺陷的检测与识别问题,机器视觉印刷质量检测系统可以提高智能化信息处理能 力,大大提高生产效率和生产的自动化程度,并且有效控制劳动力成本,同时其行业应用也将逐步加剧。
 


Returns List